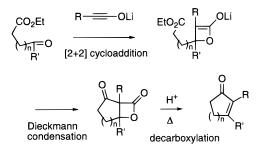
A Novel Tandem [2 + 2] Cycloaddition–Dieckmann **Condensation: Facile One-Pot Process To Obtain** 2,3-Disubstituted-2-cycloalkenones from Ynolates

Mitsuru Shindo,* Yusuke Sato, and Kozo Shishido

Institute for Medicinal Resources University of Tokushima Sho-machi 1 Tokushima 770-8505, Japan

Received March 1, 1999

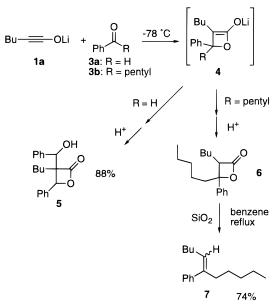

Ynolate anions (1) are ketene anion equivalents, and their chemistry is very attractive.¹ Recently, we have developed a novel and useful method for the generation of lithium vnolates via the cleavage of ester dianions prepared from readily available α, α dibromo esters (2) (Scheme 1)² and have demonstrated new

Scheme 1

$$\begin{array}{c} R \\ Br \\ Br \\ \end{array} \xrightarrow{CO_2 \text{Et}} \begin{array}{c} \frac{tert \cdot \text{BuLi}}{(4 \text{ eq})} \\ -78 \cdot \text{C} \\ 2 \end{array} \xrightarrow{R} \begin{array}{c} OLi \\ OEt \\ 0 \cdot \text{C} \end{array} \xrightarrow{R} \begin{array}{c} OLi \\ 0 \cdot \text{C} \end{array} \xrightarrow{R} \begin{array}{c} OLi \\ 0 \cdot \text{C} \end{array}$$

reactions using ynolates.³ It has been known that the [2 + 2]cycloaddition⁴ of ynolates with aldehydes affords highly reactive intermediates, β -lactone enolates.^{2,3a,5} This suggests that a welldesigned reaction using ynolates could make one-pot multistep synthesis possible via intermediate β -lactone enolates, including those not available via enolization of the corresponding β -lactones. Herein, we describe a novel methodology of tandem [2 + 2]cycloaddition-Dieckmann condensation, taking advantage of these characteristics of ynolates, and demonstrate a facile onepot synthesis of synthetically useful 2,3-disubstituted-2-cycloalkenones as an application for the described methodology (Scheme 2).

Scheme 2

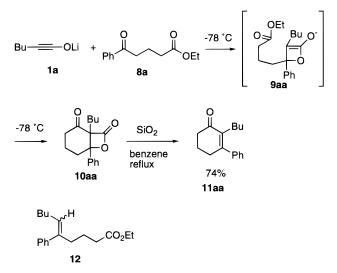


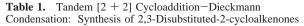
- (1) Review: Shindo, M. Chem. Soc. Rev. 1998, 27, 367-374 (2) (a) Shindo, M. *Tetrahedron Lett.* **1997**, *38*, 4433–4436. (b) Shindo,
 M.; Sato, Y.; Shishido, K. *Tetrahedron* **1998**, *54*, 2411–2422.
- (3) (a) Shindo, M.; Sato, Y.; Shishido, K. *Tetrahedron Lett.* **1998**, *39*, 4857–4860. (b) Shindo, M.; Oya, S.; Sato, Y.; Shishido, K. *Heterocycles* 1998, 49, 113-116.
- (4) Stepwise mechanism cannot be ruled out, but in this manuscript, [2 +

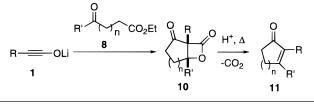
2) cycloaddition is used as a matter of convenience.
(5) (a) Schöllkopf, U.; Hoppe, I. Angew. Chem., Int.. Ed. Engl. 1975, 14, 765. (b) Hoppe, I.; Schöllkopf, U. Liebigs Ann. Chem. 1979, 219–226. See also ref 1. For examples of β -lactone chemistry, see: (c) Mulzer, J.; Chucholowski, A. Angew. Chem., Int. Ed. Engl. **1982**, 21, 777–778. For reviews see: (d) Pons, J.-M.; Pommier, A. Synthesis **1993**, 441–459. (e) Mulzer, J. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 6, pp 342-350.

We previously described the reactions of alkyl-substituted ynolates with aldehydes at -78 °C which give 2:1 adducts (e.g., 5), due to the nucleophilicity of the intermediate enolate 4a higher than that of the ynolate (Scheme 3).² This result would indicate

Scheme 3


the difficulty of tandem reactions utilizing 4a in this system because the β -lactone enolates would be immediately trapped by the aldehyde. To achieve a tandem reaction of β -lactone enolates derived from ynolates, the reactivity of the enolates (4) should be less than that of the ynolates. After surveying a range of electrophiles, we have found that ketones (e.g., pentyl phenyl ketone, **3b**) provide β -lactones (6) by the reaction with alkylsubstituted ynolates at -78 °C, followed by protonation with saturated aqueous NH₄Cl (Scheme 3). This product could be easily decarboxylated to form olefin 7, as a 2:1 mixture of isomers, in good overall yield from **3b**.⁶ If the ketone **3** possessed another electrophilic center in the molecule, an intramolecular cyclization would proceed to provide bicyclic β -lactones, leading to the formation of synthetically useful disubstituted cycloalkenes.

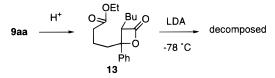

On the basis of this concept, we selected γ - or δ -keto esters as substrates, expecting the realization of the tandem [2 + 2]cvcloaddition-Dieckmann condensation. This process is exemplified by the following: To a solution of ynolate (1a), prepared from α, α -dibromo ester (1.0 mmol) and a solution of t-BuLi (4.0 mmol, 1.4 M in pentane) at -78 °C for 3 h and 0 °C for 0.5 h in THF, was added a solution of ethyl 5-oxo-5-phenylpentanoate (8a, 0.8 mmol) in THF, and the mixture was then stirred for 5 h at -78 °C. After the usual workup, acid-catalyzed decarboxylation (refluxing in benzene in the presence of a catalytic amount of silica gel: method A)⁷ was conducted without purification of β -lactone (10aa). After filtration and concentration. 2-butyl-3phenyl-2-cyclohexenone (11aa) was isolated in a 74% yield along with 6% of ethyl 5-phenyl-5-decenoate (12), which was derived from uncyclized β -lactone (9aa) (Scheme 4). This is the first example of the tandem [2 + 2] cycloaddition–Dieckmann condensation⁸ (Table 1).


⁽⁶⁾ Mechanistic investigations: Morao, I.; Lecea, B.; Arrieta, A.; Cossio, F. P. J. Am. Chem. Soc. 1997, 119, 816-825 and references therein.

⁽⁷⁾ Danheiser, R. L.; Nowick, J. S. J. Org. Chem. 1991, 56, 1176-1185.

Scheme 4

						tande reacti		decar-		
	ynolate		keto ester			temp/	time/	boxyl-		vield/
entry	1	R	8	R′	n	°C	h	ation ^a	11	%
1	1a	Bu	8a	Ph	2	-78	5	А	11aa	74
2	1b	Me	8a	Ph	2	-78	3	А	11ba	89
3	1a	Bu	8 b	Me	2	-78	1.5	А	11ab	78
4	1a	Bu	8 b	Me	2	-78	1.5	В	11ab	89
5	1b	Me	8 b	Me	2	-78	1.5	А	11bb	54
6	1a	Bu	8c	Ph	1	-40	1.5	Α	11ac	63
7	1a	Bu	8c	Ph	1	-78	1.5	В	11ac	89
8	1a	Bu	8d	Me	1	-78	1.5	А	11ad	83
9	1b	Me	8c	Ph	1	-78	1.5	В	11bc	84
10	1b	Me	8e	Tol	1	-78	1.5	В	11be	76
11	1e	pentyl	8d	Me	1	-78	1.5	А	$11ed^b$	80
12	1b	Me	8f	EtO ₂ C- (CH ₂) ₂	1	-78	2	В	11bf	60


^{*a*} Method A: A solution of **10** in benzene was refluxed in the presence of silica gel. Method B: A reaction mixture of **10** was quenched with 3% HCl–EtOH and the resulting solution was refluxed. ^{*b*} Dihydrojasmone.

To establish the generality of the tandem reaction, we examined reactions using a variety of δ -keto esters (8). As shown in the table, they can serve as substrates and yield 2,3-disubstituted 2-cyclohexenones in good yields (entry 1–5). When γ -keto esters were used, 2,3-disubstituted cyclopentenones were also obtained in high yields (entry 6–11). Since some of the bicyclic intermediates (e.g., **10bc**, **10be**) were decomposed during the workup, the reaction mixture of the Dieckmann condensation was quenched

with 3% HCl–EtOH, followed by immediate refluxing of the resulting bicyclic β -lactones (decarboxylation method B). As a result, the desired products (**11**) were successfully obtained in higher yields (entry 4, 7, 9, 10). By this improved procedure, a facile one-pot synthesis of 2,3-disubstituted cycloalkenones was achieved. The utility of this transformation has been demonstrated by the accomplishment of the concise syntheses of dihydrojasmone (**11ed**)⁹ and a potential intermediate of α -cuparenone (**11bb**).¹⁰ A keto-diester (**8f**) also gave the desired cyclopentenone (**11bf**), which demonstrates that the method will work with substrates having other ester functions.

 β -Lactone 13, obtained by protonation of the lactone enolate 9aa, did not give 10aa by treatment with LDA at -78 °C, but decomposed (Scheme 5). This indicates that the direct generation

Scheme 5

of the enolate **9aa** from the β -lactone **13** is very difficult. Use of the ynolate anion has indeed solved this problem, however, allowing regioselective formation of the enolate via [2 + 2] cycloaddition, prior to Dieckmann condensation.

In conclusion, we have developed a novel tandem [2 + 2] cycloaddition—Dieckmann condensation via ynolate anions and achieved a facile synthesis of 2,3-disubstituted-2-cycloalkenones in good yields. The salient feature of ynolate anions as a ketene anion equivalent includes the selective formation of reactive intermediates such as enolate anions via a course different from enolization of the corresponding carbonyl compounds. This result demonstrates that ynolate anions have much potential as players in new reaction sequences, especially tandem reactions.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas (No. 283, "Innovative Synthetic Reactions") from the Ministry of Education, Science, Sports and Culture, Government of Japan, and the Eisai Award in Synthetic Organic Chemistry, Japan.

Supporting Information Available: Synthetic procedures and characterization data for **11aa–11bf** (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA990656W

(10) Cossy, J.; Gille, B.; Bouzbouz, S.; Bellosta, V. Tetrahedron Lett. 1997, 38, 4069–4070.

⁽⁸⁾ A review for Dieckmann condensation: Davis, D. R.; Garratt, P. J. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 795–863. Recent examples for tandem Michael addition-Dieckmann condensation: Tatsuta, K.; Yamazaki, T.; Mase, T.; Yoshimoto, T. Tetrahedron Lett. **1998**, *39*, 1771–1772. Kobayashi, K.; Maeda, K.; Uneda, T.; Morikawa, O.; Konishi, H. J. Chem. Soc., Perkin Trans. 1, **1997**, 443–446. Maiti, S.; Bhaduri, S.; Achari, B.; Banerjee, A. K.; Nayak, N. P.; Mukherjee, A. K. Tetrahedron Lett. **1996**, *44*, 8061–8062. Groth, U.; Halfgang, W.; Köhler, T.; Kreye, P. Liebigs Ann. Chem. **1994**, 885–890. Honda, T.; Mori, M. Chem. Lett. **1994**, 1013–1016. Periasamy, M.; Reddy, M. R.; Radhakrishnan, U.; Devasagayaraj, A. J. Org. Chem. **1993**, *58*, 4997– 4999. Bunce, R. A.; Harris, C. R. J. Org. Chem. **1992**, *57*, 6981–6985.

⁽⁹⁾ For recent examples of synthesis of dihydrojasmone, see: Shono, T.; Yamamoto, Y.; Takigawa, K.; Maekawa, H.; Ishifune, M.; Kashimura, S. *Chem. Lett.* **1994**, 1045–1048. Mathew, J. J. Org. Chem. **1990**, 55, 5294– 5297. Ho, T.-L. Chem. Ind. **1988**, 762.